LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
 B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIFTH SEMESTER - November 2015
 MT 5407 - FORMAL LANGUAGES AND AUTOMATA

Date: 13/11/2015
Max. : 100 Marks
Time: 09:00-12:00

SECTION A

Answer ALL the questions:

$(10 \times 2=20)$

1. Construct deterministic finite automata to check whether given number is divisible by two.
2. Define non-deterministic finite automata.
3. Define a context free grammar.
4. Construct a grammar to generate the language $L(G)=\left\{a^{m} c b^{m}: m \geq 0\right\}$.
5. Show that the grammar $G=(\{S\},\{a\}, S \rightarrow S S, S \rightarrow a, S)$ is ambiguous.
6. Define a derivation tree.
7. Eliminate ε-production from the set of all production rules $(S \rightarrow a S a, S \rightarrow b S b, S \rightarrow a, S \rightarrow b, S \rightarrow \varepsilon)$
8. Define a unit production.
9. State uvwxy theorem.
10. Define Cauchy normal form.

SECTION B

Answer any FIVE questions:

($5 \times 8=40$)
11. Construct finite automata which can list whether a given positive integer is divisible by 3(three).
12. Construct an NFA to accept set of all strings over $\{0,1\}$ ends with 111 or 000.
13. Prove that $L=\left\{a^{p} / p\right.$ is a prime $\}$ is not regular.
14. Write a grammar to generate $L=\left\{a^{n} b^{n} / n \geq 1\right\}$.
15. Remove ε production from the CFG given below $S \rightarrow A B, A \rightarrow a A A / \varepsilon, B \rightarrow b B B / \varepsilon$.
16. For the string aabbaaa find left and right most derivation using the production rule given below, $S \rightarrow A a S / a / S S, A \rightarrow S b A / b a$.
17. Write about Chomsky hierarchy.
18. Define ambiguous grammar and Show that the grammar $S \rightarrow S S, S \rightarrow a, S \rightarrow b$ is ambiguous.

SECTION C

Answer any TWO questions:

19. a) Construct an NFA accepting all strings over $\{0,1\}$ which end in 1 but does not contain the substring 00.
b) Construct finite automata to accept $L=\{a b, b a\}$.
20. a) Show that the grammar $E \rightarrow E+E / E^{*} E / E /$ id is ambiguous. Construct an equivalent grammar making id+id*id unambiguous.
b) Find a CNF grammar equivalent to a grammar whose production rules are $S \rightarrow b A / a B, A \rightarrow b A A / a S / a, B \rightarrow a B B / b S / b$.
21. Construct an equivalent DFA for a given NFA

δ	a	b
q_{0}	$\left\{q_{0}, q_{1}\right\}$	ϕ
q_{1}	ϕ	$\left\{q_{1}, q_{2}\right\}$
q_{2}	ϕ	ϕ

22.State and prove Pumping lemma and also show that $L=\left\{a^{n} b^{n} / n \geq 1\right\}$ is not regular.

